

entificati

A Systematic Review of Aircraft Disinsection Safety, Toxicity and Tolerability

Michael Klowak^{1,2}, Gregory Hawley², Syed Zain Ahmad^{1,2}, Candice Madakadze², Aquilla Reid-John², Jahmar Hewitt², Asal Adawi², Andrea K. Boggild^{1,2,*} ¹Institute of Medical Science, University of Toronto, Toronto, ON, Canada; ²Tropical Disease Unit, Toronto General Hospital, Toronto, ON, Canada *Contact: andrea.boggild@utoronto.ca; boggildlab.ca; @BoggildLab

Introduction

- Vehicular conveyances, encompassing marine, rail, ground, and aircraft transportation contribute to the global spread of vector-borne infectious diseases, including dengue, chikungunya, and Zika via movement of infected people as well as transmission-capable adult vectors
- Treatment of aircraft with insecticide in a procedure referred to as 'disinsection' is recommended to prevent conveyance of arthropod vectors internationally and to mitigate the globalization of vector-borne infectious diseases
- Despite the widespread use of disinsection, comprehensive guidance documents regarding the safety and toxicity of such procedures to human health are largely unavailable
- We undertook a systematic review to synthesize the literature around the human health effects of conveyance disinsection

Methods

- The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines and was registered in the International Prospective Register of Systematic Reviews, PROSPERO (CRD42024543998)
- Six electronic databases (PubMed, Embase, Medline, Scopus, LILACS, CINAHL) were searched from inception to May 31, 2024 without language restriction

Insecticide compared to control (no insecticide) during disinsection of conveyances
Population: humans
Setting: aircraft
Intervention: disinsection
Comparison: no disinsection
Outcome: objective and subjective human health effects

Stratification	No. of studies ^a	Absolute number (%)	Broad human health effects (N, %)	Overall risk of bias	Inc.	Ind.	Imp.	Certainty of evidence (GRADE)	References
Morbidity	3	22/62 (35.5%)	Early retirement (8/42, 19.1) Long-term disability (8/42, 19.1) Hospitalization (14/20, 70) Workdays lost (~78)	Serious	Very high	Very high	Very high	Very low ⊕000	Kilburn 2004 Przyborowski 1962 Woodyard 2001
Adverse events	3	16/30 (53.2%)	Blood cell disease (1/1, 100) Anaphylaxis (1/9, 11.1) Seizures (14/20, 70)	NA ^b	NA	NA	NA	NA ^b	Przyborowski 1962 Vanden Driessche 2010 Woodyard 2001
Objective toxicity (per physical examination or laboratory investigation)	9	72/105 (68.6%)	Anaemia, not quantified (16/33, 48.5) Epileptic encephalogram (1/20, 5) Eye conjunctivitis (3/16, 18.8) Impaired cardiovascular function (3/20, 15) Impaired pulmonary function (6/25, 24) Lip oedema (1/4, 25) Skin erythema (2/16, 12.5) Serum/urine insecticide metabolites detected (15/15, 100) (37–87 ppb/0.30–81.5 ppb, respectively)	Very serious	Very high	Very high	Very high	Very low ⊕OOO	Edmundson 1970 Kilburn 2004 Maddock 1961 Przyborowski 1962 Smith 1972 Sutton 2007 Vanden Driessche 2010 Wei 2012 Woodyard 2001
Subjective symptoms	8	119/123 (96.8%)	Cardiovascular (5/12, 41.7) Dermatological (24/54, 44.4) Epistaxis (3/9, 33.3) Fever (2/20, 10) Gastrointestinal (15/51, 29.4) Hair loss (12/33, 36.4) Musculoskeletal (1/20, 5) Neurological (54/102, 52.9) Ocular (13/21, 61.9) Respiratory (20/27, 74.1) SCIP (38/38, 100)	Very serious	Very high	Very high	Very high	Very low	Bonta 2003 Brooke 1971 Kilburn 2004 Maddock 1961 Przyborowski 1962 Sutton 2007 Vanden Driessche 2010 Woodyard 2001
Subjective tolerability	1	84/591 (14.2%)	Malodour (84/591, 14.2)	Very serious	Very high	Very high	Very high	Very low	Sullivan 1972

Results

Toronto Western Princess Margaret

- Document organization, and deduplication, as well as title and abstract, and full-text screening was executed using the online platform Covidence
- Articles were independently double screened by two reviewers and any discrepancies were resolved through discussion and in the event of non-agreement, by a tertiary arbitrator
- The quality assessment tool GRADE (Grading of Recommendations, Assessment, Development and Evaluations) was implemented to assess the quality and bias of evidence

Mendeley (n = 1)	Studies from databases/registers (n = 11908) PubMed (n = 6113) OVID (n = 2362) Scopus (n = 2218) LILACS (n = 1209) CINAHL (n = 5) Mendeley (n = 1)	References from other sources (n = 115) Citation and grey literature searching (n = 115)
------------------	--	---

Table 1. Summary of findings: safety, toxicity and tolerability of disinsection

Abbreviations: NA: not applicable; ppb: part per billion; SCIP: symptoms consistent with insecticide poisoning. GRADE Working Group grades of evidence: Inc: inconsistency; Ind: indirectness; Imp: imprecision. a. Insufficient data reported from remaining studies represented in Table 4A and 4B to be considered in culation: b. Case series only, risk of bias and GRADE cannot be determined

Random sequence generation (selection bias)	
Allocation concealment (selection bias)	
Blinding of participants (performance / detection bias)	

Duplicates identified by Covidence (n = 3378) Marked as ineligible by automation tools (n = 0)Other reasons (n = 0) Studies screened (n = 8610) Studies excluded (n = 8105) Studies sought for retrieval (n = 505) Studies not retrieved (n = 0)Studies excluded (n = 398) Studies assessed for eligibility (n = 505) Wrong setting (n = 155) Wrong outcomes (n = 4)Wrong intervention (n = 14)Wrong study design (n = 36) Lack of primary data (n = 99) Primary data unavailable (n = 19) Wrong patient population (n = 25)Wrong route of administration (n = 8)Insufficient reporting of primary data (n = 38)

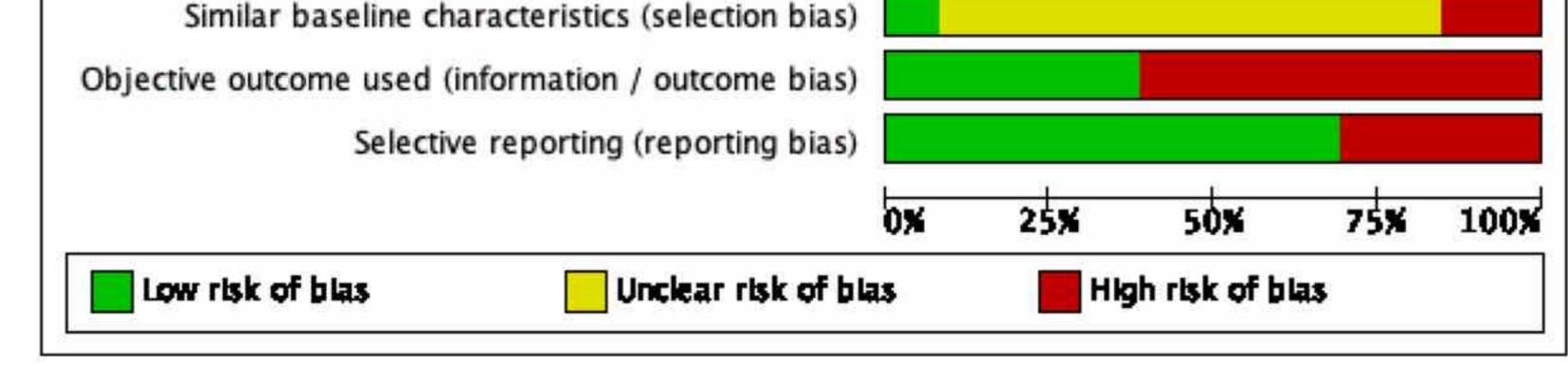


Figure 2. Summary of GRADE Risk of Bias Assessment

Discussion

- Twenty-one studies on human health effects were identified, and solely comprised of very limited post-hoc public health surveillance, small cohort studies, 1 case-control, case series, and case reports (Figure 1, Table 1)
- No high-quality studies on the safety, toxicity, or tolerability of disinsection were found, as studies were generally of poor quality, with high bias and low certainty of effects (Figure 2)
- Standard human subjects' considerations and methodological rigor were often ignored or not reported
- As a result, the systematic review identified suboptimal breadth and quality of evidence surrounding human health impacts as no high-quality studies investigating the safety, toxicity, or tolerability of disinsection were identified
- This scant literature base has a high risk of bias; however, given the reports of significant morbidity, adverse events, and toxicity putatively attributable to aircraft disinsection, well-designed clinical trials investigating the full range of human health impacts of disinsection on passengers and crew are urgently needed

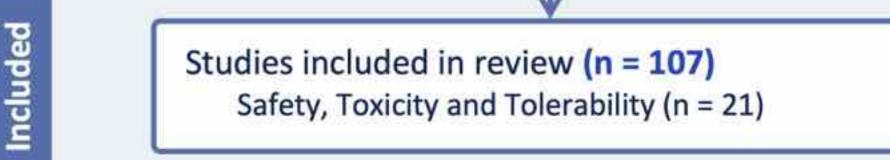


Figure 1. PRISMA Flowchart

References

1. Bonta DM et al. Occupational Illness Among Flight Attendants Due to Aircraft Disinsection. State California Health and Human Services Agency: Department of Health Services. 2003. 2. Brooke JP et al. Disinsection of aircraft with pressure packs containing the pyrethroids, resmethrin and bioresmethrin. Pesticide Science 1971; 2:133-137. 3. Edmundson WF et al. DDT and DDE in blood and DDA in urine of men exposed to 3 percent DDT aerosol. Public health reports 1970; 85:457-463. 4. Kilburn KH et al. Effects of onboard insecticide use on airline flight attendants. Arch Environ Health 2004; 59:284-91. 5. Maddock DR et al. Preliminary tests with DDVP vapor for aircraft disinsection Public health reports 1961; 76:777-780. 6. Przyborowski T et al. Dieldrin insecticide as a cause of an outbreak of intoxication on board of a ship. Przeglad Epidemiologiczny 1962; 16(3): 315-320. 7. Smith PW et al. Toxicology of dichlorvos at operational aircraft cabin altitudes. 1972; 43(5): 473-478. 8. Sullivan WN et al. Worldwide studies on aircraft disinsection at "blocks away". Bull World Health Organ 1972; 46:485-91. 9. Sutton PM et al. Pesticide illness among flight attendants due to aircraft disinsection. Am J Ind Med 2007; 50:345-56. 10. Vanden Driessche KS et al. Anaphylaxis in an airplane after insecticide spraying. J Travel Med 2010; 17:427-9. 11.Wei B et al. Exposure of flight attendants to pyrethroid insecticides on commercial flights: urinary metabolite levels and implications. Int J Hyg Environ Health 2012; 215:465-73. 12.Woodyard C. Fliers fume over planes treated with pesticides. USA Today, October 9 2010. 2001.