

A Systematic Review of Dietary Lifestyle Interventions for Neuropathic Pain

Michael Klowak¹, Rachel Lau², Mariyam Mohammed², Afia Birago², Bethel Samson², Layla Ahmed², Camille Renee², Milca Meconnen², Mahmud Sam², Andrea K. Boggild^{1,2,*} ¹Institute of Medical Science, University of Toronto, Toronto, ON, Canada; ²Tropical Disease Unit, Toronto General Hospital, Toronto, ON, Canada *Contact: <u>andrea.boggild@**utoronto.ca; boggildlab.ca; @BoggildLab** 😒</u>

Introduction

- Leprosy is a neglected tropical disease affecting those residing in rural poverty¹
- Therapies for chronic severe neuropathic pain (NP), a common consequence of leprosy, are associated with significant severe side effects and have limited effectiveness¹
- Lifestyle interventions have become increasingly recognized as accessible and cost-effective strategies to reduce the burden and severity of neuropathic pain, particularly in type 2 diabetes
- Diets seeking to improve physiological nerve health, support gut barrier integrity, and decrease systemic inflammation have recently emerged as powerful tools conferring neuroprotective and anti-inflammatory effects, potentially reducing the neurological morbidity of multiple diseases¹
- This systematic review seeks to understand and synthesize the literature reporting NP outcomes following dietary interventions compared to routine standard of care

Methods

- A comprehensive search strategy encompassing underlying neuropathic etiologies, lifestyle interventions, and stratifiers was conducted using 5 databases (Embase, Medline, Pubmed, Scopus, LILACS) from inception to Aug 2024
- Articles were screened independently by two reviewers and discrepancies were resolved by a tertiary arbitrator during title/abstract, and full-text screening
- The quality assessment tool GRADE (Grading of Recommendations, Assessment, Development and Evaluations) was implemented to assess the quality and bias of evidence

Author (Year)	Setting	Ν	Mean Age (SD)	Range	Sex N (F:M)	Etiology	Population	Lifestyle	Outcomes (mean ± SD)
Arnold (2017)	Australia	47	Int: 67; Con: 66	52-69	Int: 10:13; Con: 7:17	Chronic Kidney Disease	Stage 3/4 Chronic Kidney Disease	Potassium reduced diet (1 mmol/kg/day) including: energy (if BMI >30), sodium (<100 mmol/day), and phosphate (<1000 mg/day) restriction for 2 years	Efficacy: Improvement in the change in TNS (0.4±2.2 vs 2.8±3.3, p<0.01), and nerve excitability score (5.1±2.8 vs -2.3±2.2, p=0.04) between groups Safety: No AE observed. Tolerability: 8.7% L2FU in int. group & 12.5% L2FU in con. group.
Bunner (2015)	US	34	Int: 57 (6); Con: 58 (6)	-	Int: 8:9; Con: 11:6	Diabetes	T2DM + PN	Low-fat plant-based diet + 1000 mcg vitamin B12 /day including: omitting animal products, limiting fat intake to 20-30 g/day, and favouring low-glycemic index foods for 5 months	Efficacy: Improvement of pain on MPQ (22.6±11 vs 13.5±10, p<0.01), MNSI (7.5±2.5 vs 5.3±2.5, p<0.01), and NTSS (10.7±4.9 vs 6.8±4.5, p<0.01) within int. group, and in the change in MPQ (-9.1±11.4 vs - 0.9±11.3, p=0.04), MNSI (-2.2±2.4 vs -0.6±1.5, p=0.03), and feet conductance (0.7±10.5 vs -11.7±13.2, p=0.03) between groups Safety: No AE observed. Tolerability: ~76% adherence.
Hadjivassiliou (2006)	UK	35	Int: 67.2 (2); Con: 70.9 (1.9)	-	-	Gluten Sensitivity (with 28% of participants demonstrating histopathological evidence of gluten enteropathy)	Gluten Sensitivity + PN	Gluten free diet including counselling from expert dietician for 1 year	Efficacy: Improvement in the change in sural sensory nerve action potential amplitude within the int. group (1.39±0.22 vs 2.15±0.43, p<0.001), con. group (1.39±0.47 vs 0.96±0.29, p<0.01), and between groups (0.76±0.31 vs -0.42±0.25, p<0.03) Safety: Not mentioned. Tolerability: High adherence.
Kender (2023)	Germany	31	Int: 66.6 (5.8); Con: 67.1 (5.9)	50-75	Int: 5:12; Con: 5:9	Diabetes	T2DM	Plant-based fasting- mimicking diet for 1 week / month for 6 months	Efficacy: Improvement in tibial motor nerve conduction velocity (37.23±2.38 vs 32.89±3.05, p<0.05), and HPT (-0.76±0.37 vs -1.10±0.30, p<0.05) within con. group, and tibial nerve compound muscle action potential (7.79±1.24 vs 9.21±1.45, p<0.05) within int. group Safety: Mentioned "low" but AEs not specified
Safari (2020)	Iran	96	Int: 39.67 (10.66); Con: 40.21 (10.46)	Int: 26-59; Con: 24-60	Int: 20:28; Con: 21:27	Chronic Sciatica	Chronic Sciatica + NP	Low calorie diet for 30 days	Tolerability: High adherence and no L2FU Efficacy: Improvement in MPQ sensory (6.73±1.41 vs 4.46±1.71, p<0.001), affective (0.98±0.64 vs 0.50±0.62, p=0.002), total (7.71±1.69 vs 4.96±2.02, p<0.001) scores, and PPI (2.23±0.47 vs 2±0.68, p=0.001) within int. group, PPI (2±0.68 vs 1.79±1.3, p=0.013) within con. group, and MPQ sensory (4.46±1.71 vs 5.74±2.11, p=0.015), affective (0.50±0.62 vs 0.87±0.85, p=0.002), total (4.96±2.02 vs 6.62±2.53, p=0.001) scores, and PPI (1.02±0.98 vs 1.79±1.3, p=0.006) between groups adjusted for baseline Safety: Not mentioned Tolerability: 100% adherence and no L2FU
Torlak (2020)	Turkey	60	Diet Group: 50.3 (1.64); Diet + PT Group: 54.30 (1.38); PT Group: 54.85 (3.81)	-	Diet Group: 10:10; Diet + PA Group: 10:10; PA Group: 10:10	Chronic Lower Back Pain	Chronic Lower Back Pain + NP	Intermittent high protein diet (2 days / week) and Mediterranean diet (5 days / week) for 5 weeks	Efficacy: Improvement in VAS (8.3±0.36 vs 4.7±0.41, p<0.001; 7.45±0.44 vs 4.7±0.42, p<0.001; 6.65±0.31 vs 3.1±0.59, p<0.001), and LANSS (4.8±0.88 vs 2.3±0.59, p<0.001; 10.6±0.88 vs 7.1±0.76, p<0.001; 5.1±0.42 vs 2.6±0.36, p<0.001) within diet group, diet + PT group, and PT group respectively Safety: Mentioned "low" but AEs not specified Tolerability: 100% adherence and no L2FU

Results

Toronto General Toronto Western Princess Margaret

- Inclusion criteria: Randomized controlled trials, clinical trials, cohort studies, observational studies, case-control studies, case series & reports, no language restriction
- Exclusion criteria: Reviews, conference abstracts, editorials, animal studies, in vitro studies, trial descriptions
- Primary outcomes gathered: Efficacy by subjective pain and neuropathy severity (on physical exam and questionnaires), and objective nerve function (via quantitative sensory testing (QST), electrophysiology, biopsy, imaging, and physical exam); as well as safety & tolerability.

Res Studies from databases (registers (n = 21698)	
Embase (n = 7896) PubMed (n = 5117) MEDLINE (n = 4702) Scopus (n = 3983) LILACS (n = 0)	References from other sources (n = 1) Citation searching (n = 1) Grey literature (n = 0)
	References removed (n = 6311) Duplicates identified manually (n = 5)

Table 1. Study characteristics

ass index; Con: Control; DM: diabetes mellitus; HPT: heat pain threshold; Int: intervention; L2FU: loss to follow up; LANSS: leeds assessment of neuropathic symptoms and signs; MNSI: Michigan neuropathic symptoms and signs; MNSI: Michigan neuropathic pain; NTSS:

Random sequence generation (selection bias) Allocation concealment (selection bias) Baseline characteristics (selection bias) Blinding of outcome assessment (detection bias)

Incomplete outcome data (attrition bias)				
Selective reporting (reporting bias)				-
Objective outcomes (information/outcome bias)				
	0%	25%	50%	75%	100%

Figure 2. Summary of GRADE Risk of Bias Assessment

Discussion

- After screening, 344 articles were included; 114 were interventional trials, with 6 focused on dietary interventions (Figure 1)
- We synthesized evidence on the efficacy, safety, and tolerability of various dietary interventions, including low-fat plant-based, fasting-mimicking, Mediterranean, low-calorie, gluten-free, and potassium-reduced diets (Table 1)
- Our findings support the hypothesis that optimized dietary health may alter neuropathic pathophysiology, with some interventions showing significant improvements in NP
- Specific diets, such as low-fat plant-based and low-calorie, showed neuroprotective and anti-inflammatory benefits, improving NP severity in several populations via objective QST, electrophysiology, and subjective questionnaires.
- Overall risk of bias was moderate, with 64% of measures deemed low risk; the most common biases were detection, selection, and group allocation issues (Figure 2)
- Dietary interventions offer a low-risk, low-cost alternative for NP, especially in T2DM, but larger trials are needed to strengthen the evidence

References

I. Klowak M, Boggild AK. A review of nutrition in neuropathic pain of leprosy. *Therapeutic* 5. Kender Z, von Rauchhaupt E, Schwarz D, et al. Six-month periodic fasting does not affect somatosensory nerve function in type 2 diabetes patients. Front Endocrinol (Lausanne). Advances in Infectious Disease. 2022 Jun;9:20499361221102663. 2023;14. doi:10.3389/fendo.2023.1143799 2. Bunner AE, Wells CL, Gonzales J, Agarwal U, Bayat E, Barnard ND. A dietary intervention for chronic diabetic neuropathy pain: A randomized controlled pilot study. *Nutr Diabetes*. 2015;5(5). doi:10.1038/nutd.2015.8 blinded randomized controlled trial. *Explore*. 2022;18(1):76-81. 3. Arnold R, Pianta TJ, Pussell BA, et al. Randomized, controlled trial of the effect of dietary potassium restriction on nerve function in CKD. *Clinical Journal of the American Society* doi:10.1016/j.explore.2020.08.003 of Nephrology. 2017;12(10):1569-1577. doi:10.2215/CJN.00670117 4. Hadjivassiliou M, Kandler RH, Chattopadhyay AK, et al. Dietary treatment of gluten

neuropathy. *Muscle Nerve*. 2006;34(6):762-766. doi:10.1002/mus.20642

6. Torlak MS, Bagcaci S, Akpinar E, Okutan O, Nazli MS, Kuccukturk S. The effect of intermittent diet and/or physical therapy in patients with chronic low back pain: A single-7. Safari MB, Nozad A, Ghaffari F, Ghavamzadeh S, Alijaniha F, Naseri M. Efficacy of a Short-Term Low-Calorie Diet in Overweight and Obese Patients with Chronic Sciatica: A Randomized Controlled Trial. Journal of Alternative and Complementary Medicine. 2020;26(6):508-514. doi:10.1089/acm.2019.0360

Figure 1. PRISMA Flowchart for all included lifestyle intervention papers for the indication of neuropathic